49 research outputs found

    Longitudinal associations among asthma control, sleep problems, and health-related quality of life in children with asthma: a report from the PROMIS® Pediatric Asthma Study

    Get PDF
    Few studies have investigated the complex relationship among asthma control, sleep problems, and health-related quality of life (HRQOL) among children with asthma. This study aimed to test the longitudinal effect of asthma control status on asthma-specific HRQOL through the mechanism of nighttime sleep quality and daytime sleepiness

    The impact of electronic health records (EHR) data continuity on prediction model fairness and racial-ethnic disparities

    Full text link
    Electronic health records (EHR) data have considerable variability in data completeness across sites and patients. Lack of "EHR data-continuity" or "EHR data-discontinuity", defined as "having medical information recorded outside the reach of an EHR system" can lead to a substantial amount of information bias. The objective of this study was to comprehensively evaluate (1) how EHR data-discontinuity introduces data bias, (2) case finding algorithms affect downstream prediction models, and (3) how algorithmic fairness is associated with racial-ethnic disparities. We leveraged our EHRs linked with Medicaid and Medicare claims data in the OneFlorida+ network and used a validated measure (i.e., Mean Proportions of Encounters Captured [MPEC]) to estimate patients' EHR data continuity. We developed a machine learning model for predicting type 2 diabetes (T2D) diagnosis as the use case for this work. We found that using cohorts selected by different levels of EHR data-continuity affects utilities in disease prediction tasks. The prediction models trained on high continuity data will have a worse fit on low continuity data. We also found variations in racial and ethnic disparities in model performances and model fairness in models developed using different degrees of data continuity. Our results suggest that careful evaluation of data continuity is critical to improving the validity of real-world evidence generated by EHR data and health equity

    Developing A Fair Individualized Polysocial Risk Score (iPsRS) for Identifying Increased Social Risk of Hospitalizations in Patients with Type 2 Diabetes (T2D)

    Full text link
    Background: Racial and ethnic minority groups and individuals facing social disadvantages, which often stem from their social determinants of health (SDoH), bear a disproportionate burden of type 2 diabetes (T2D) and its complications. It is therefore crucial to implement effective social risk management strategies at the point of care. Objective: To develop an EHR-based machine learning (ML) analytical pipeline to identify the unmet social needs associated with hospitalization risk in patients with T2D. Methods: We identified 10,192 T2D patients from the EHR data (from 2012 to 2022) from the University of Florida Health Integrated Data Repository, including contextual SDoH (e.g., neighborhood deprivation) and individual-level SDoH (e.g., housing stability). We developed an electronic health records (EHR)-based machine learning (ML) analytic pipeline, namely individualized polysocial risk score (iPsRS), to identify high social risk associated with hospitalizations in T2D patients, along with explainable AI (XAI) techniques and fairness assessment and optimization. Results: Our iPsRS achieved a C statistic of 0.72 in predicting 1-year hospitalization after fairness optimization across racial-ethnic groups. The iPsRS showed excellent utility for capturing individuals at high hospitalization risk; the actual 1-year hospitalization rate in the top 5% of iPsRS was ~13 times as high as the bottom decile. Conclusion: Our ML pipeline iPsRS can fairly and accurately screen for patients who have increased social risk leading to hospitalization in T2D patients

    Exploring factors influencing asthma control and asthma-specific health-related quality of life among children

    Get PDF
    Abstract Background Little is known about factors contributing to children’s asthma control status and health-related quality of life (HRQoL). The study objectives were to assess the relationship between asthma control and asthma-specific HRQoL in asthmatic children, and to examine the extent to which parental health literacy, perceived self-efficacy with patient-physician interaction, and satisfaction with shared decision-making (SDM) contribute to children’s asthma control and asthma-specific HRQoL. Methods This cross-sectional study utilized data collected from a sample of asthmatic children (n = 160) aged 8–17 years and their parents (n = 160) who visited a university medical center. Asthma-specific HRQoL was self-reported by children using the National Institutes of Health’s Patient-Reported Outcomes Measurement Information System (PROMIS) Pediatric Asthma Impact Scale. Satisfaction with SDM, perceived self-efficacy with patient-physician interaction, parental health literacy, and asthma control were reported by parents using standardized measures. Structural equation modeling (SEM) was performed to test the hypothesized pathways. Results Path analysis revealed that children with better asthma control reported higher asthma-specific HRQoL (β = 0.4, P < 0.001). Parents with higher health literacy and greater perceived self-efficacy with patient-physician interactions were associated with higher satisfaction with SDM (β = 0.38, P < 0.05; β = 0.58, P < 0.001, respectively). Greater satisfaction with SDM was in turn associated with better asthma control (β = −0.26, P < 0.01). Conclusion Children’s asthma control status influenced their asthma-specific HRQoL. However, parental factors such as perceived self-efficacy with patient-physician interaction and satisfaction with shared decision-making indirectly influenced children’s asthma control status and asthma-specific HRQoL

    Exploring factors influencing asthma control and asthma-specific health-related quality of life among children

    Get PDF
    Abstract Background Little is known about factors contributing to children’s asthma control status and health-related quality of life (HRQoL). The study objectives were to assess the relationship between asthma control and asthma-specific HRQoL in asthmatic children, and to examine the extent to which parental health literacy, perceived self-efficacy with patient-physician interaction, and satisfaction with shared decision-making (SDM) contribute to children’s asthma control and asthma-specific HRQoL. Methods This cross-sectional study utilized data collected from a sample of asthmatic children (n = 160) aged 8–17 years and their parents (n = 160) who visited a university medical center. Asthma-specific HRQoL was self-reported by children using the National Institutes of Health’s Patient-Reported Outcomes Measurement Information System (PROMIS) Pediatric Asthma Impact Scale. Satisfaction with SDM, perceived self-efficacy with patient-physician interaction, parental health literacy, and asthma control were reported by parents using standardized measures. Structural equation modeling (SEM) was performed to test the hypothesized pathways. Results Path analysis revealed that children with better asthma control reported higher asthma-specific HRQoL (β = 0.4, P < 0.001). Parents with higher health literacy and greater perceived self-efficacy with patient-physician interactions were associated with higher satisfaction with SDM (β = 0.38, P < 0.05; β = 0.58, P < 0.001, respectively). Greater satisfaction with SDM was in turn associated with better asthma control (β = −0.26, P < 0.01). Conclusion Children’s asthma control status influenced their asthma-specific HRQoL. However, parental factors such as perceived self-efficacy with patient-physician interaction and satisfaction with shared decision-making indirectly influenced children’s asthma control status and asthma-specific HRQoL

    A Study of Generative Large Language Model for Medical Research and Healthcare

    Full text link
    There is enormous enthusiasm and concerns in using large language models (LLMs) in healthcare, yet current assumptions are all based on general-purpose LLMs such as ChatGPT. This study develops a clinical generative LLM, GatorTronGPT, using 277 billion words of mixed clinical and English text with a GPT-3 architecture of 20 billion parameters. GatorTronGPT improves biomedical natural language processing for medical research. Synthetic NLP models trained using GatorTronGPT generated text outperform NLP models trained using real-world clinical text. Physicians Turing test using 1 (worst) to 9 (best) scale shows that there is no significant difference in linguistic readability (p = 0.22; 6.57 of GatorTronGPT compared with 6.93 of human) and clinical relevance (p = 0.91; 7.0 of GatorTronGPT compared with 6.97 of human) and that physicians cannot differentiate them (p < 0.001). This study provides insights on the opportunities and challenges of LLMs for medical research and healthcare
    corecore